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The paper gives a relation of the Rabinowitsch-Mooney type between the consistency variables T, and Dy
which has been suggested, together with the force balance, for approximate calculation of the fall velocity
of spherical particle in generalized Newtonian fluid. Its applicability to solutions characterized by the Ellis
flow model has been experimentally proved.

In refs! ~ * we dealt with the calculation of the pressure drop connccted with a flow of

compressible and noncompressible Newtonian Fluid (NF) and Generalized Newtonian
Fluid (GNF) through a fixed randomly packed bed of both spherical and nonspherical
particles. The difference from the former way of solving this problem consisted in that
the resistance of layer was divided into the frictional and shape components. This led to
introduction of a dimensionless quantity given by the ratio of the shape and frictional
resistances of spherical particles which is called the resistance criterion. Using the
approximate presumption of agreement between the distribution of stress during the
flows of an NF and a GNF through a fixed bed of particles, we applicd the Rabi-
nowitsch-Mooney equation (for a pipe) to the calculation of pressure drop.

The aim of this work is to experimentally verify whether or not the approximate
presumption of agreement between the distribution of stress in an NF and a GNF can
be used — together with the thercto corresponding force balance and cequation of the
Rabinowitsch-Mooney type — for an approximate calculation of fall velocity of sphe-
rical particle in GNF in creeping region.

THEORETICAL

The solution by Stokes* of the flow past a spherical particle can be written in the form

D, = 2uy/ly, = t/u, )

s
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o= Lo+ foo= f(+). @

Here D and 1, = f; are the consistency variables of the problem solved, the charac-
teristic velocity of system, wg,, is the fall velocity, the characteristic lincar dimension of
system, I, is the diameter d of the particle, fiis the total resistance, fis the frictional
resistance, and f; is the shape resistance of spherical particie referred to its surlace arca,
and p is the Newtonian dynamic viscosity, the resistance criterion being p = 1/2.

With the approximate presumption of agreement between distribution of stress
during flow of an NF and a GNF past a spherical particle, an cquation of Rabi-
nowitsch-Mooney type was derived in ref.% in the following form:

T
s

D, = 2uy/l, = (Il/:/?.)ft"v2 D(1) dt, 3)
0

where D(t) represents the dependence of shear rate D on the shear stress T whose
course is given generally by the flow curve of GNF or by the respective flow model.

From the presumption introduced it further follows that in the force balance (Eq. (2))
the resistance criterion has the value of 1/2 again. Hence, for a fall of a particle we get
the following relation for the T, quantity from the force balance (Eq. (2)):

T = (ps - p) gd/() ’ (4)

where pg and p are densities of the particle and the liquid, respectively, and g is the
gravitational acceleration.

As it follows from Eq. (3) the problem can casily be solved for the flow models
which explicitly express the dependence of the shear rate D on the shear stress t. From
among the models of this type which also respect the Newtonian behaviour of GNF in
the region of T — 0, the model by Ellis is the most simple.

D = (/|1 + (/1" '], )

where 1), Ty, and o are its parameters. For this modecl the solution of Eq. (3) leads to
the relation:

D, = (t/n) [l + (x/1 ) /2 u-1)]. (0)

The treatment of the problem of the fall of particles also involves the way in which
the cffect of walls is taken into account. As it follows from the solution by Stokes the
fall velocity of the particle depends on the way of distribution of stress, and in an
apparatus limited by walls it is generally impossible to expect an agreement between
the stress distribution in an NF and a GNF. Hence it cannot generally be expected that
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the way of involvement of the effect of walls which is used for Newtonian systems will
be satisfactory for non-Newtonian fluids as well.

However, if this way of involvement of the cffect of walls agrees with experimental
results obtained for non-Newtonian fluids at least up to a certain value of the ratio
(d/Dy) x>, Where Dy is the diameter of cylindrical column, then — in the region d/Dy €
[0; (d/Dy) ax ] — @ satisfactory agreement can be expected between the stress distribution
in a Newtonian and a non-Newtonian fluids, which agreement is nccessary for the
application of the method suggested for determination of fall velocity of spherical

particle.

EXPERIMENTAL

The fall velocity of glass, steel, and lead spheres was measured in aqucous solutions of hydro-
xycthyleellulose Cellosize QP-40 (Union Carbide Corp., U.S.A.). Natrosol 250 MR and Natrosol 250 11
(Hereules Powder Comp., Holland), in a solution of polyethylene oxide WSR 301 (Union Carbide Corp.
U.S.A.). and in a solution of polyacrylamide Separan AP-45 (Dow Chemical Corp., Switzerland). The fall
velocities were measured in cylindrical columns of 20, 8, 4, and 2 em diameters.

‘The physical properties of the particles used are given in Table 1. The given values of densities pg were
determined pycnometrically; the given diameter d of particles was calculated from the weight of 50
particles and their density pg using the formula for calculation of volume of a spherical particle.

The flow curves were determined by measurements carried out on a rotary viscometer Reotest 2. The
following procedure was adopted for estimation of the zero-shear viscosity vg: the values of fall velocities
u, measured in the columns of the two greatest diameters, where a satisfactory validity of the way of
involvement of effect of walls used for Newtonian fluids could be anticipated, were divided by the Faxén

correction factor® for the effect of walls in the following form:
Fuo = ug/ug = 1 = 2104(d/Dy) + 2.09 (d/D)}. 7

The velocity values ugy, thus calculated were introduced. together with the known values of the quanti-
ties Iy, = d and 7 according to Eq. (). into Eq. (1) in which the quantity p has - for GNIF - the meaning

Tasrel
Physical properties of spherical particles used

Particle No. d=1l4. mm pe kg m™ Particle No. d=14 mm po kg m™

1 1.465 2506 8 3178 7834
2 1.923 2527 0 3.973 7826
3 2.782 2504 10 4.752 7 808
4 3.457 2867 B 1.973 11 090
S 4117 2 506 12 2851 11190
6 0.823 7 646 13 3.902 11160
7 1.992 7877
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of the so-called effective viscosity of the system. The values of effective viscosity ju were plotied against
the u, values, the zero-shear viscosity 1 being estimated by extrapolation of the p values for the condi-
tion of uy — 0. The remaining two parameters of the Ellis model were determined by the method by
Turian’.

The values of parameters of the Ellis model and the other characteristics of the fluids used are given in
Tables II and III. The density values p given there and the parameters of the Ellis {low modcl were esti-
mated at the temperature equal to the arithmetic mean of the minimum and the maximum temperatures
used for the measurements of the fall velocity of the particle in the given solution. The temperatures of
solutions varied within the limits of 0.9 °C about the mean temperature.

TasLe 11
Polymer solutions used

Parameters of Lllis model

Solution No. Composition Din's:’:‘):';p
£ Ng Pas Ty Pa @
1 2.4% Cellosize QP-40 1002 0.85 110.8 1.65
2 2.5% Cellosize QP-40 1003 0.98 71.2 1.86
3 1.3% Natrosol 250 MR 1 001 2.25 8.76 1.89
4 1.5% Natrosol 250 MR 1 003 3.30 11.64 2.16
S 1.0% Natrosol 250 H 1 005 3.00 3.99 1.87
6 1.2% Natrosol 250 H 1 002 6.50 9.94 2.37
7 1.3% Natrosol 250 H 1003 10.25 11.54 2.14
8 1.3% Polyox WSR 301 1 001 3.30 4.39 2.55
9 0.5% Separan AP-45 999 9.00 1.32 3.22
TasLe 111

Characteristics of solutions used and results of measurements

Solution No.  Range of D, s7! E,s n (d/Dy)nax o Spum
1 0.2 -100 0.005 32 0.206 0.042 0.067
2 2.7 -140 0.012 33 0.238 0.035 0.049
3 02 - 50 0.229 36 0.206 0.060 0.065
4 02 - 50 0.329 40 0.206 0.03y 0.066
5 0.2 -100 0.654 32 0.206 0.091 0.137
6 1.5 - 40 0.896 33 0.238 0.055 0.098
7 0.13- 20 1.013 36 0.238 0.207 0.196
8 0.2 -100 1.165 30 0.238 0.503 0.181
9 02 -100 15.14 24 0.206 0.480 0.257

“ Numerical solution by Hopke and Slattery’.
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The applicability of the method suggested for estimating fall velocity was verificd using 296 expe-
rimental values for different solutions and particles. The experiments were carried out in the range of values
of the Reynolds number Re € (5 . 1075; 5.4 . 10™") defined by the relation Re = 2 pu2 /T, which alter substi-
tution of T, with the use of Eq. (1) assumes the form used for Newtonian fluids in literature. The maximum
value of ratio d/D, measured was 0.24; the corresponding value of the Faxén correction factor® for the
effect of walls is F, = 0.54.

RESULTS AND DISCUSSION

The values of the consistency variable T, and of the characteristic velocity ug, were
calculated using Eqs (4) and (6), respectively. The value uy was multiplied by the
corresponding value of the Faxén correction factor® for the effect of walls, F,, using
Eq. (7). Then the value of relative deviation was estimated for such corrected and expe-
rimental values of fall velocities

S,

i = Uy exp/uch, corr ~ 1 (8)

and the values of mean relative deviations were calculated for the individual solutions
too (Table III):

5 = 1/n¥18). 9)

iml

From the table it is obvious that the largest value of the mean relative deviation is
cxhibited by the solutions of Polyox and Separan (Nos 8 and 9). Here the applied way
of involvement of effect of walls was unsatisfactory, too, because the value of relative
deviation 9§, for a given particle depended upon the d/Dy ratio.

A part of experimental results in the form of relative deviation 6, for the solution No. 7,
exhibiting the sccond largest value of mcan relative deviation 0, is given in Table 1V,

TaBLE IV
Comparison of experimental and corrected values of fall velocities with application of relative deviation d;
for solution No. 7 (1.3% Natrosol 250 H)

Relative deviation §; for particle No.

Dy. cm
5 9 13
20 0.046 0.191 0.316
8 0.033 0.204 0.360
4 0.094 0.227 0.372
2 0.203 0.324 0.449
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The particles given there have almost identical diameters but differ in their densities
(Nos 5 glass, 9 steel, 10 lead). From the table it can be seen that for this solution the
magnitude of the relative deviation o; depends on the density of particles, the way of
involvement of effect of walls being unsatisfactory again.

With regard to these findings it seems uscful — for the solution types investigated —
to suitably delimit the region of satisfactory validity of Eq. (0).

The measure of deformation of a continuum depends on the stresses existing therein
and on its material (rheological) propertics. Hence it scems useful to introduce some
characteristic quantity independent of the magnitude of stress and involving the
parameters of the respective flow model. For the solution types investigated the £ =
(ct = 1) 1o/t 5 turned out to be suitable; its values are given in Table 111,

From the table it follows that the suggested method of estimation of the fall velocity
is unsatisfactory for E > 0.9 s. Therefore, the results for solutions Nos 7 — 9 will not be
considered.

The results for the solutions Nos 1 — 6 were further arranged according to the diame-
ters of the columns used (Table V). From the values of mean relative deviations 8 given
it is obvious that for the column of the smallest diameter (D = 2 ¢m) the mean relative
deviation O is the greatest, whereas for the remaining columns the effect of their diame-
ter on the magnitude of deviation is insignificant.

If the results for the column of the smallest diameter are neglected, then the value of
mean relative deviation 8 has the value of 0.047 for the remaining sct ol 149 expe-
riments limited by the value of ratio (d/D,),,.x = 0.12, which corresponds to the value
of the Faxén correction factor F, = 0.75.

Chhabra ct al.® suggested a sct of Eqs (10), (11) for calculation of the terminal fall
velocities of spherical particle in creeping region in GNFs characterized by the Ellis
flow modcl:

X = CpRey/24 (10)

X [1 + 0.50EIS (- 1)]. (n

TABLE V
Comparison ol values of mean relative deviations d for all columns used and solutions Nos | - 6

Dy. cm n 0
20) 35 0.045
8 57 0.051
4 57 0.044

[£%3
wn
~

0.070
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The values of numerical coefficicnts of Eq. (11) were obtained experimentally. In
Eqs (10) and (I11) the drag coefficient is Cp =8 f./(p 12), the Reynolds number is
Rey = ugy, d p/g, and the Ellis number is £/ = 2Y2 1)y 1. /(T od). As itis 1./, , = 2Y? X El,
and D, o/, = 2'7El, the relation (6) can be modificd to give Eq. (10) which can be
compared with the relations by Chhabra et al.® as well as with the results of numerical
solution by Hopke and Slattery? which provides the so-called upper and lower limits of
the quantity X, the arithmetic mean of the both limits being considered to be the correct
result.

This comparison for the value of the parameter o = 1.88 is presented in Fig. 1 which
also gives experimental results for the values of a = 1.87 (solution No. 5) and « = 1.89
(solution No. 3). From the figure it can be seen that, in the whole range of the values of
El number given, the agreement between the original solution and the experimental
results is the best one. Morcover it follows from the figure that the solution given in
this paper is "located" between the results following from the numerical treatment and
cmpirical relations by Chhabra et al. in about two thirds of the given range of EI A
qualitatively identical result is also obtained from the comparison carricd out for other
values of the « parameter.

A full comparison of the results of numerical solution with experiment using the
mean relative deviation 8 according to Eq. (9) is given in Table I11. From this table it
follows that for the solutions Nos 1 — 6 the value of mean relative deviation d estimated
by us is lower than that using the results of numerical treatment, wherceas for the solu-
tions Nos 7 — 9 (for which the method suggested by us for estimation of fall velocity is
unsatisfactory) the opposite is truc.

With application of the numerical treatment the result for the so-called upper and
lower limits of the X quantity depends on the choice of the streem function type, and
from the character of the problem it does not at all follow that the arithmetic mean of
the upper and lower limits of X quantity should be the correct result. With regard to the

Fia. 1

Comparison of approximate solution for the Ellis

flow model with relations given in literature for
the value of parameter o = 1.88 and experimental

results:

the solution given in this paper, — -

- — Hopke and Slallcryo ...... Chhabra ct al.%,
our experiments O « = 1.87. @ « = 1.89 El
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fact that the quantity X is inversely proportional to the fall velocity of the particle, we
could equally well consider the arithmetic mean of the fall velocities corresponding to
the upper and lower limits of the X quantity, and a priori it is impossible to say which
of the two ways is more correct.

Beside its simplicity and unambiguity the method suggested by us has the advantage
in being extendable also to the region where the Reynolds number makes itsclf felt (by
adopting the results of theoretical part of ref.2) and to the fall of nonspherical particles
in GNF (by adopting the theoretical part of ref.?). At the same time, these tasks require
fulfilling of the basic condition of geometrical similarity and (after involving the effect
of walls into the value of fall velocities) respect the fact that the problem is analogous
to the solution by Stokes, i.e., it is axisymmetrical. Therefrom it follows that the sct of
Egs (1) — (3) together with some of the dependences Cp, = Cp(Re) given in literature for
the fall of spherical particle in a Newtonian fluid will be applicable to predictions of
fall velocity of spherical particle in GNFs only up to a certain critical valuc ol the
Reynolds number Re from which the so-called secondary motion becomes significant.
In such case the trajectory of the falling particle is not a straight linc but a helix. Also
it can be expected that the above-mentioned critical valuc of Re will depend on the type
of the model fluid, which is supported by experimental results obtained in our labo-
ratory in the context of studics of problems of fluidized bed 0.

CONCLUSIONS

The dividing of resistance into a friction and a shape components together with the
presumed agreecment between the distribution of stress during flow of GNF past a sphe-
rical particle cnabled a simple and sufficiently accurate way of calculation of the fall
velocity of spherical particle in GNF in crecping region.

Its suitability for the investigated types of solutions characterized by the Ellis {low
model was limited by the value of the quantity £ < 0.9 s and up to the value of ratio
(d/Dy)max = 0.12 which is, according to Eq. (7), connccted with the value of the
correction factor for the effect of walls F, = 0.75.

The author is indebted to Dr Pavel Mitschka for valuable suggestions.

SYMBOLS
Cp drag coefficient
D shear rate, s7!
Dy diameter of cylindrical column, m
Ds consistency variable, s™!
d diameter of spherical particle, m
E characteristic quantity of Ellis flow model, s
El Ellis number
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F, correction factor for effect of walls
f total resistance of spherical particle referred to its surface area, Pa
fs shape resistance of spherical particle referred to its surface area, Pa
fe friction resistance of spherical particle referred to its surface area, Pa
g gravitational acceleration, m s™!
leh characterictic linear dimension of system, m
n number of experiments for a given liquid
Re Reynolds number
Reo Reynolds number for Ellis liquid
Up, exp fall velocity of particle, m st
Uch characteristic velocity of system, m s™!
Ueh, corr corrected characteristic velocity of system, m s7!
X dimensionless quantity of Eq. (10)
@ parameter of Ellis flow model
d mean relative deviation
i relative deviation
o parameter of Ellis flow model, Pa s
i dynamic or effective viscosity, Pa s
P density of liquid, kg m™>
Ps density of particle, kg m™
T shear stress, Pa
T2 parameter of Ellis flow model, Pa
Ts consistency variable, Pa
3 resistance criterion
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